(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(.(nil, y)) →+ .(nil, f(y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [y / .(nil, y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(nil) → nil
f(.(nil, y)) → .(nil, f(y))
f(.(.(x, y), z)) → f(.(x, .(y, z)))
g(nil) → nil
g(.(x, nil)) → .(g(x), nil)
g(.(x, .(y, z))) → g(.(.(x, y), z))
Types:
f :: nil:. → nil:.
nil :: nil:.
. :: nil:. → nil:. → nil:.
g :: nil:. → nil:.
hole_nil:.1_0 :: nil:.
gen_nil:.2_0 :: Nat → nil:.
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f, g
(8) Obligation:
TRS:
Rules:
f(
nil) →
nilf(
.(
nil,
y)) →
.(
nil,
f(
y))
f(
.(
.(
x,
y),
z)) →
f(
.(
x,
.(
y,
z)))
g(
nil) →
nilg(
.(
x,
nil)) →
.(
g(
x),
nil)
g(
.(
x,
.(
y,
z))) →
g(
.(
.(
x,
y),
z))
Types:
f :: nil:. → nil:.
nil :: nil:.
. :: nil:. → nil:. → nil:.
g :: nil:. → nil:.
hole_nil:.1_0 :: nil:.
gen_nil:.2_0 :: Nat → nil:.
Generator Equations:
gen_nil:.2_0(0) ⇔ nil
gen_nil:.2_0(+(x, 1)) ⇔ .(nil, gen_nil:.2_0(x))
The following defined symbols remain to be analysed:
f, g
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_nil:.2_0(
n4_0)) →
gen_nil:.2_0(
n4_0), rt ∈ Ω(1 + n4
0)
Induction Base:
f(gen_nil:.2_0(0)) →RΩ(1)
nil
Induction Step:
f(gen_nil:.2_0(+(n4_0, 1))) →RΩ(1)
.(nil, f(gen_nil:.2_0(n4_0))) →IH
.(nil, gen_nil:.2_0(c5_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
nil) →
nilf(
.(
nil,
y)) →
.(
nil,
f(
y))
f(
.(
.(
x,
y),
z)) →
f(
.(
x,
.(
y,
z)))
g(
nil) →
nilg(
.(
x,
nil)) →
.(
g(
x),
nil)
g(
.(
x,
.(
y,
z))) →
g(
.(
.(
x,
y),
z))
Types:
f :: nil:. → nil:.
nil :: nil:.
. :: nil:. → nil:. → nil:.
g :: nil:. → nil:.
hole_nil:.1_0 :: nil:.
gen_nil:.2_0 :: Nat → nil:.
Lemmas:
f(gen_nil:.2_0(n4_0)) → gen_nil:.2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_nil:.2_0(0) ⇔ nil
gen_nil:.2_0(+(x, 1)) ⇔ .(nil, gen_nil:.2_0(x))
The following defined symbols remain to be analysed:
g
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol g.
(13) Obligation:
TRS:
Rules:
f(
nil) →
nilf(
.(
nil,
y)) →
.(
nil,
f(
y))
f(
.(
.(
x,
y),
z)) →
f(
.(
x,
.(
y,
z)))
g(
nil) →
nilg(
.(
x,
nil)) →
.(
g(
x),
nil)
g(
.(
x,
.(
y,
z))) →
g(
.(
.(
x,
y),
z))
Types:
f :: nil:. → nil:.
nil :: nil:.
. :: nil:. → nil:. → nil:.
g :: nil:. → nil:.
hole_nil:.1_0 :: nil:.
gen_nil:.2_0 :: Nat → nil:.
Lemmas:
f(gen_nil:.2_0(n4_0)) → gen_nil:.2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_nil:.2_0(0) ⇔ nil
gen_nil:.2_0(+(x, 1)) ⇔ .(nil, gen_nil:.2_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_nil:.2_0(n4_0)) → gen_nil:.2_0(n4_0), rt ∈ Ω(1 + n40)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
f(
nil) →
nilf(
.(
nil,
y)) →
.(
nil,
f(
y))
f(
.(
.(
x,
y),
z)) →
f(
.(
x,
.(
y,
z)))
g(
nil) →
nilg(
.(
x,
nil)) →
.(
g(
x),
nil)
g(
.(
x,
.(
y,
z))) →
g(
.(
.(
x,
y),
z))
Types:
f :: nil:. → nil:.
nil :: nil:.
. :: nil:. → nil:. → nil:.
g :: nil:. → nil:.
hole_nil:.1_0 :: nil:.
gen_nil:.2_0 :: Nat → nil:.
Lemmas:
f(gen_nil:.2_0(n4_0)) → gen_nil:.2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_nil:.2_0(0) ⇔ nil
gen_nil:.2_0(+(x, 1)) ⇔ .(nil, gen_nil:.2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_nil:.2_0(n4_0)) → gen_nil:.2_0(n4_0), rt ∈ Ω(1 + n40)
(18) BOUNDS(n^1, INF)